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ABSTRACT Presented are aspects of a constitutive model for crystalline metals
containing dislocation and disclination defects. Kinematics and balance laws are
developed simultaneously at two scales of observation. The macroscopic kinematic
description is characterized by a multiplicative decomposition of the deformation
gradient, while the meso-level description follows from an additive decomposition of a
connection into objects reflecting dislocations and disclinations. At the macroscale, the
standard linear and angular momentum balances are enforced, while at the mesoscale, we
postulate additional momentum equations for driving forces conjugate to defect densities.

INTRODUCTION Experiments have indicated the formation of misoriented rotational
and/or laminar defect substructures within grains of ductile metals_subjected to large
deformations [cf. Ortiz & Repetto, 1999]. Following previous generalized continuum
theories of crystal defects [Minagawa, 1979; Pecherski, 1983; Bammann, 2001}, we
develop a finite strain micropolar model wherein continuously distributed dislocations

and disclinations capture the physics of evolving defect patterns at multiple length scales.

PROCEDURES, RESULTS, AND DISCUSSION The deformation gradient F°, is

decomposed multiplicatively as

o =ax" /8K = F** R F7, o
where Cartesiah current coordinates x° = ¢°(X,¢), and where F*%, ﬁ‘fz ,and F? '.7.4 are.

the elastic deformation, the lattice rotation due to the time history of disclination flux, and
the plastic deformation attributed to the time history of dislocation flux. We can further
decompose the elastic deformation into compatible and incompatible parts:

F% = F%F5,, 2F oy = F - F%, <0, @

with the subscripted comma denoting partial coordinate differentiation. Disclinations are
assumed to only induce rotation, i.e., R’* = R™# [Lardner, 1973; Pegherski, 1983]. We

next introduce linear connection coefficients 777, and the rank two metric tensor Ca:
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e =FaF ™ u+0L,  Cu=FS P, 3)
 with F*%F'%, the so-called “crystal connection” of non-Riemannian dislocation .
theories, and with (. a micropolar rotation mode associated with disclinations
[Minagawa, 1979], subject to the anti-symmetry requirements Q,,c,:—:Q;’CC‘da =Q,,[m].
The torsion and curvature, respéctively, of I'y. are written as [Schouten, 1954]

a -1G_ o] ﬁ -1 - ﬁ ) - e
T = Foa(F 5s P e = F%5F5)+ 20010 Ruse = Riagos = 2V1 Quppay* TeaQipoap )

" where V, denotes covariant differentiation with respect to I';. . The dislocation density
a® and the disclination density 8%, both referred to the spatial frame, are then found as

2® = T4, 407 =R, ,. Q)

Using Schouten’s [1954] identity R,[,,d] = Ta[bc, 4 and Bianchi’s equations Ra,,[ o] = 0,
conservation laws for the defect densities are written as [Minagawa, 1979]

Crwa® +£,6" =0, 6%, =0. ‘ ©)

We assume a general free energy potential, per unit mass, with the functional dependency

y=y(Cs,0”.6%8), ™

where Cfap = F gy F ‘s (with the Euclidean spatial metric g,,) and wheres = bJ;; is

a dimensionless measure of the statistically-stored dislocation line length per unit current
volume p,, with b the magnitude of the Burgers vector. The local energy balance and

entropy inequality, under strictly isothermal conditions, are written, respectively, as

(112)0™ (L,8)4e + X0 +E40™ = PEZ pY7, ®)

with p the current mass density, e the internal energy, o® the symmetric Cauchy stress
satisfying ™ + pf* = pv°, 7, and &, generalized meso-level stresses, and £, the Lie
derivative with respect to the velocity field v* = x° og;'. Substituting (7) into (8), gives

o™ =2p(8y/ 0g,,)s o gy B F P — k£ 20, ©)

where we define ﬁ‘j, Eft‘sz” Z.A and x=pdyPe, and also provides the conjugate

thermodynamic force relations z,, = poyPda® and &, = pOwMO?. We now make the
more specific assumption '

pv = pu (G )+ (12 (1 0P g™ + 10788t +e6%) (1)
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with y, the recoverable energy and 4, I,, l, and ¢ an elastic shear modulus, length

parameter associated with dislocations, length parameter associated with disclinations,
and dimensionless scalar. Quasi-static mesoscopic momentum balances are postulated as
[Bammann, 2001]

8% Xy =0, 8%yt Buat™ Xpe =0- (11)

To complete the kinetic description, expressions for the defect density fluxes are needed:

pr=rr(), Ees(ia). Geoil(a) i) o
where {A’ } , {A’ }, {A" } , and {A‘ } denote tensor functions of the appropriate rank

depending explicitly upon the members of the set (o""’, YapsGar K z,,,'c) mapped to
suitable configurations. Spatial gradients of the dislocation density reflecting the
contribution of pile-ups to hardening are embodied by the term z,,. Specific forms of
(12) must be developed, subject to constraints imposed by inequality (9): and the force
balances (11). As an alternative to (12),, ft'f‘z can be found explicitly in terms of a*

assuming stationary disclinations [Lardner, 1973]. If we further assume that 0. satisfies
the integrability conditions Or. = g5 =, then the six equations in (11) are sufficient to
determine the six independent components of gj, and (1 2)3 is not needed. Characteristic
defect patterns are expected to emerge as a result of certain prescriptions of Z,, Iy, ¢, and
Egs. (12) leading to non-convexity of the energy potential (10) [Ortiz & Repetto, 1999].
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